1-5. A single draw will be made with equal probability from the four possibilities $\{0,0,0,8\}$. Let X denote the number selected.

1. $\mathrm{P}\left(\mathrm{X}^{2}<25\right)=$
a) $1 / 4$
b) $3 / 4$
c) $2 / 4$
d) 1
e) $7 / 16$

ITEM	1	TEST		76 日G
1	$2 *$	3	4	5
U 14	86	0	0	0
L 14	86	0	0	0

$$
\begin{array}{|ll}
\hline \text { MEAN SCORE } 15.34 & \text { STANDARD DEVIATION } 3.88 \\
\hline
\end{array}
$$

$$
\text { Exam 5 GRADE }=2.0+0.3(\mathrm{SCORE}-11)
$$

2. $\mathrm{E} \mathrm{X}=$
a) 1
b) 5
c) 2
d) 4
e) 3

	ITEM	2	TEST		
	1	2	$3 *$	4	5
U	0	4	93	4	0
L	7	0	71	21	0

3. $E X^{2}=$
a) 8
b) 16
c) 64
d) 4
e) 12

	ITEM	3		TEST	76 B
	1	2*	3	4	5
1	\square	96	4	0	\square
L	4	46	21	25	4

4. Variance $X=$
a) 8
b) 16
c) 64
d) 4
e) 12

$|$| ITEM | 4 | TEST | 7601 | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | $5 *$ | |
| 1 | 6 | 0 | 0 | 0 | 100 |
| L | 39 | 4 | 7 | 18 | 32 |

5. $\mathrm{SD} \mathrm{X}=$ (chose closest answer)
a) 1.5
b) 2.5
c) 3.5
d) 4.5
e) 5.5
ITEM 5 TEST 76 GQ

	1	2	$3 *$	4	5
U	6	0	100	\square	\square
	14	18	50	18	0

6-9. Random variables X, Y satisfy

$$
\begin{array}{ll}
E X=3 & \text { Var } X=2 \\
E Y=7 & \text { Var } Y=4
\end{array}
$$

6. $\mathrm{E}(2 \mathrm{X}-\mathrm{Y}+\mathrm{X}-4)=$
a) -1
b) 2
c) -2
d) 5
e) 0
ITEM 6 TEST 7600

	1	2	$3 *$	4	5
1	0	4	96	0	0
	7	4	86	0	4

7. Variance $(2 X-4)=$
a) 0
c) 4
d) 2
e) 10

	ITEM	7	TEST	76010
1	2^{*}	3	4	5
1	7	82	11	0
L	75	0	18	7
0				

8. If X, Y are statistically independent Variance $(\mathrm{X}+\mathrm{Y})=$
a) 2
b) $\sqrt{20}$
c) $\sqrt{2}$
d) 4
e) 6
ITEM 8 TEST 76日6

	1	2	3	4	$5 *$
	0	0	0	0	100

$\left.\begin{array}{ll}\mathrm{L} & \square\end{array}\right] \quad 0 \quad 01610$
9. If X, Y are statistically independent Variance $(\mathrm{X}-\mathrm{Y})=$
a) 2
b) $\sqrt{20}$
c) $\sqrt{2}$
d) 4
e) 6

	ITEM	9	TEST	76010
1	2	3	4	$5 *$
U 21	4	0	6	75
L	57	0	18	0
25				

10-12. One play of a venture returns random amount X with
E X = $3 \quad$ Variance $X=4$
SD X = 2

There will be 100 independent plays of this venture whose total T we will denote (as usual) by $T=X_{1}+\ldots .+X_{100}$.
10. $\mathrm{E} \mathrm{T}=$
a) 20
b) 30
c) 900
d) 200
e) 300

	ITEM	10	TEST	7600	
	1	2	3	4	$5 *$
U	6	0	4	6	96
L	0	4	4	4	89

11. $\mathrm{SD} \mathrm{T}=$
a) 20
b) 30
c) 900
d) 200
e) 300

TEM	11		TEST	
1*	2	3	4	5
156	4	\square	46	
7	21			

12. Using the normal approximation of the distribution of T and the rules of thumb to determine the approximate value of $\mathrm{P}(\mathrm{T}<320)$.
a) 0.975
b) 0.84
c) 0.68
d) 0.5
a) 0.34

ITEM	12	TEST	7606	
1	$2 *$	3	4	5
U	11	43	14	21
L	46	11	29	7

13-15. We are given

$\mathrm{P}(\mathrm{OIL})=.4$	$\mathrm{P}\left(+\left.\right\|_{\text {if }} \mathrm{OIL}\right)=0.75$	$\mathrm{P}\left(+\left.\right\|_{\text {if }} \mathrm{OIL}^{C}\right)=0.2$
cost to test $=10$	cost to drill $=50$	gross return from oil $=500$

13. $\mathrm{P}(\mathrm{OIL}+)=$
a) 0.75
b) 0.3
c) .25
d) .5
e) .8

ITEM	13	TEST		76016
1	$2 *$	3	4	5
U 11	89	0	0	0
L 54	25	7	7	7

14. Net return from the policy "test but only drill if the test is + " in the contingency "OIL +" =
a) 500
b) 450
c) -60
d) 440
e) -10
ITEM 14 TEST 76日6

	1	2	3	$4 *$	5
U	0	0	4	93	4
L	11	14	0	75	0

15. E(net return from policy \#14) is a sum. What is the contribution of the contingency OIL + to that sum?
a) 145
b) 375
c) 132
d) -45
e) -3
ITEM 15 TEST 76GE

1	2	$3 *$	4	5
0	6	7	93	6
L				
L	46	32	4	6

16. A p-value of 0.013 has been calculated from data. A significance value $\alpha=$ 0.01 has been decided upon for this test. What decision is made by the test?
a) reject $\mathbf{H}_{\mathbf{0}}$
b) fail to reject $\mathbf{H}_{\mathbf{0}}$
c) not enough information to decide

	ITEM	16	TEST	7601	
1	$2 *$	3	4	5	
U	14	75	11	6	0
L	54	32	14	0	0

$\mathbf{1 7 - 1 9}$. Here is $P\left(\right.$ reject $\left.H_{0}\right)$ curve for a test of $H_{0}: p=0.1$.
$\mathrm{P}\left(\right.$ test rejects $\left.H_{0}\right)$

17. Choose (the closest value to) α.
a) .19
b) .59
c) .49
d) .09
e) .29

ITEM	17	TEST	7601	
1	2	3	4	$5 *$
U 21	7	6	4	68
L 29	0	11	25	36

18. Which is the alternative hypothesis $\mathbf{H}_{\mathbf{A}}$?
a) $p<0.9$
b) $\mathrm{p}=0.1$
c) $\mathrm{p} \neq 0.1$
d) $\mathrm{p}>0.1$
e) $p>0.9$
$\begin{array}{rrrrrr} & 1 & 2 & 3 & 4 * & 5 \\ \text { U } & 0 & 0 & 4 & 96 & 0 \\ \text { L } & 11 & 0 & 11 & 60 & 11\end{array}$
$\begin{array}{llllll}\mathrm{L} & 11 & 0 & 11 & 66 & 11\end{array}$
19. $\mathrm{P}($ reject the null hypothesis when $\mathrm{p}=0.15)$ ~
a) 0.87
b) 0.77
c) 0.33
d) 0.23
e) 0.13
$\left.\begin{array}{rrrrr}\text { ITEM } & 19 & \text { TEST } & 7606 \\ 1 * & 2 & 3 & 4 & 5 \\ \text { U } 86 & 7 & 0 & 6 & 7 \\ \text { L } & 32 & 18 & 14 & 11\end{array}\right) 25$

20-23. A business wishes to test the null hypothesis that the rate p at which customers use PayPal is $\mathbf{p}_{0}=0.3$ versus the alternative that the rate p exceeds 0.3 . An equal probability random sample of 100 transactions is selected from the many thousands for the last month and it is found that 41 are PayPal. The test will use $\alpha=0.05$.
20. The numerical value of $\operatorname{SD}\left(\mathrm{p}_{0}\right)$ (text calls it $\left.\mathrm{SD}(\hat{\mathrm{p}})\right)=$
a) 0.057
b) 0.046
c) 0.061
d) 0.037
e) 0.042

	ITEM	20	TEST		
	1	$2 *$	3	4	5
UI	0	160	6	0	0
L	21	54	11	7	7

21. What is the numerical value of the test statistic z for this z -test?
a) 1.40
b) 2.40
c) 2.54
d) 2.64
e) 2.87
ITEM 21 TEST 76日6

	1	$2 *$	3	4
U	6	96	6	0
	7	29	32	25

22. If the answer to \#21 is taken to be 3.22 (it is NOT) what would be the p-value?
a) 0.8944
b) 0.0006
c) 0.962
d) 0.1004
e) 0.0406

ITEM	22	TEST		76001	
1	$2 *$	3	4	5	
U	6	96	4	6	6
L	29	25	29	11	7

23. Which one is the P (reject null hypothesis) curve for this test?
a
$\mathrm{P}\left(\right.$ test rejects $\left.H_{0}\right)$

$\mathrm{P}\left(\right.$ test rejects $\left.H_{0}\right)$
d

$\mathrm{P}\left(\right.$ test rejects $\left.H_{0}\right)$
b
$\mathrm{P}\left(\right.$ test rejects $\left.H_{0}\right)$

C

ITEM 23 TEST 76日6

	1	2	3	4	$5 *$
U	7	0	11	18	64

$\begin{array}{lllll}L & 29 & 11 & 18 & 14\end{array} 25$

